Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microsyst Nanoeng ; 10: 47, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590818

RESUMO

Studying the membrane physiology of filamentous fungi is key to understanding their interactions with the environment and crucial for developing new therapeutic strategies for disease-causing pathogens. However, their plasma membrane has been inaccessible for a micron-sized patch-clamp pipette for pA current recordings due to the rigid chitinous cell wall. Here, we report the first femtosecond IR laser nanosurgery of the cell wall of the filamentous fungi, which enabled patch-clamp measurements on protoplasts released from hyphae. A reproducible and highly precise (diffraction-limited, submicron resolution) method for obtaining viable released protoplasts was developed. Protoplast release from the nanosurgery-generated incisions in the cell wall was achieved from different regions of the hyphae. The plasma membrane of the obtained protoplasts formed tight and high-resistance (GΩ) contacts with the recording pipette. The entire nanosurgical procedure followed by the patch-clamp technique could be completed in less than 1 hour. Compared to previous studies using heterologously expressed channels, this technique provides the opportunity to identify new ionic currents and to study the properties of the ion channels in the protoplasts of filamentous fungi in their native environment.

2.
J Trace Elem Med Biol ; 83: 127381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38211406

RESUMO

BACKGROUND: Fungi absorb and solubilize a broad spectrum of heavy metals such as vanadium (V), which makes them a main route of its entry into the biosphere. V as vanadate (V5+) is a potential medical agent due to its many metabolic actions such as interaction with phosphates in the cell, and especially its insulin-mimetic activity. Antidiabetic activity of V-enriched fungi has been studied in recent years, but the biological and chemical bases of vanadium action and status in fungi in general are poorly understood, with almost no information on edible fungi. METHODS: This manuscript gives a deeper insight into the interaction of V5+ with Coprinellus truncorum, an edible autochthonous species widely distributed in Europe and North America. Vanadium uptake and accumulation as V5+ was studied by 51V NMR, while the reducing abilities of the mycelium were determined by EPR. 31P NMR was used to determine its effects on the metabolism of phosphate compounds, with particular focus on phosphate sugars identified using HPLC. RESULTS: Vanadate enters the mycelium in monomeric form and shows no immediate detrimental effects on intracellular pH or polyphosphate (PPc) levels, even when applied at physiologically high concentrations (20 mM Na3VO4). Once absorbed, it is partially reduced to less toxic vanadyl (V4+) with notable unreduced portion, which leads to a large increase in phosphorylated sugar levels, especially glucose-1-phosphate (G1P) and fructose-6-phosphate (F6P). CONCLUSIONS: Preservation of pH and especially PPc reflects maintenance of the energy status of the mycelium, i.e., its tolerance to high V5+ concentrations. Rise in G1P and F6P levels implies that the main targets of V5+ are most likely phosphoglucomutase and phosphoglucokinase(s), enzymes involved in early stages of G6P transformation in glycolysis and glycogen metabolism. This study recommends C. truncorum for further investigation as a potential antidiabetic agent.


Assuntos
Agaricales , Vanadatos , Vanádio , Vanádio/análise , Vanadatos/química , Biomassa , Fosfatos/análise , Micélio/metabolismo
3.
J Exp Bot ; 74(3): 1107-1122, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36453904

RESUMO

Metabolism of metals in microalgae and adaptation to metal excess are of significant environmental importance. We report a three-step mechanism that the green microalga Chlorella sorokiniana activates during the acquisition of and adaptation to manganese (Mn), which is both an essential trace metal and a pollutant of waters. In the early stage, Mn2+ was mainly bound to membrane phospholipids and phosphates in released mucilage. The outer cell wall was reorganized and lipids were accumulated, with a relative increase in lipid saturation. Intracellular redox settings were rapidly altered in the presence of Mn excess, with increased production of reactive oxygen species that resulted in lipid peroxidation and a decrease in the concentration of thiols. In the later stage, Mn2+ was chelated by polyphosphates and accumulated in the cells. The structure of the inner cell wall was modified and the redox milieu established a new balance. Polyphosphates serve as a transient Mn2+ storage ligand, as proposed previously. In the final stage, Mn was stored in multivalent Mn clusters that resemble the structure of the tetramanganese-calcium core of the oxygen-evolving complex. The present findings elucidate the bioinorganic chemistry and metabolism of Mn in microalgae, and may shed new light on water-splitting Mn clusters.


Assuntos
Chlorella , Microalgas , Manganês/metabolismo , Chlorella/metabolismo , Microalgas/metabolismo , Metais/metabolismo
4.
Anal Bioanal Chem ; 414(20): 6213-6222, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35759022

RESUMO

Biotransformation of toxic selenium ions to non-toxic species has been mainly focused on biofortification of microorganisms and production of selenium nanoparticles (SeNPs), while far less attention is paid to the mechanisms of transformation. In this study, we applied a combination of analytical techniques with the aim of characterizing the SeNPs themselves as well as monitoring the course of selenium transformation in the mycelium of the fungus Phycomyces blakesleeanus. Red coloration and pungent odor that appeared after only a few hours of incubation with 10 mM Se+4 indicate the formation of SeNPs and volatile methylated selenium compounds. SEM-EDS confirmed pure selenium NPs with an average diameter of 57 nm, which indicates potentially very good medical, optical, and photoelectric characteristics. XANES of mycelium revealed concentration-dependent mechanisms of reduction, where 0.5 mM Se+4 led to the predominant formation of Se-S-containing organic molecules, while 10 mM Se+4 induced production of biomethylated selenide (Se-2) in the form of volatile dimethylselenide (DMSe) and selenium nanoparticles (SeNPs), with the SeNPs/DMSe ratio rising with incubation time. Several structural forms of elemental selenium, predominantly monoclinic Se8 chains, together with trigonal Se polymer chain, Se8 and Se6 ring structures, were detected by Raman spectroscopy.


Assuntos
Nanopartículas , Phycomyces , Selênio , Biotransformação , Micélio , Nanopartículas/química , Phycomyces/metabolismo , Selênio/química
5.
Protoplasma ; 259(4): 917-935, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34595603

RESUMO

The growing zone (GZ) of the unicellular coenocytic sporangiophore of Phycomyces blakesleeanus represents the site of stimulus reception (light, gravity, gas) and stimulus response, i.e., local modulations of the elongation growth, which may result, in dependence of the stimulus direction, in tropic bending. Until now, evidence for a possible participation of the columella in sensory reception is absent. We confirm with light microscopy earlier studies that show that the GZ and the columella are not separated by a membrane or cell wall, but rather form a spatial continuum that allows free exchange of cytoplasm and organelle transport. Evidence is presented that the columella is responsive to external stimuli. Columellae, from which spores and sporangial cell wall had been removed, respond to exogenous auxin with a local depolarization of the membrane potential and an increased growth rate of the GZ. In contrast, auxin applied to the GZ causes a decrease of the growth rate irrespective of the presence or absence of sporangia. The response pattern is specific and relevant for the sensory reception of Phycomyces, because the light-insensitive mutant C148carAmadC, which lacks the RAS-GAP protein MADC, displays abnormal IAA sensitivity and membrane depolarization. We argue that the traditional concept of the GZ as the only stimulus-sensitive zone should be abandoned in favor of a model in which GZ and columella operate as a single entity capable to orchestrate a multitude of stimulus inputs, including auxin, to modulate the membrane potential and elongation growth of the GZ.


Assuntos
Phycomyces , Gravitropismo/fisiologia , Ácidos Indolacéticos , Luz , Potenciais da Membrana , Organelas , Transdução de Sinais
6.
Biochem J ; 477(19): 3729-3741, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32936286

RESUMO

Microalgae have evolved mechanisms to respond to changes in copper ion availability, which are very important for normal cellular function, to tolerate metal pollution of aquatic ecosystems, and for modulation of copper bioavailability and toxicity to other organisms. Knowledge and application of these mechanisms will benefit the use of microalgae in wastewater processing and biomass production, and the use of copper compounds in the suppression of harmful algal blooms. Here, using electron microscopy, synchrotron radiation-based Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, and X-ray absorption fine structure spectroscopy, we show that the microalga Chlorella sorokiniana responds promptly to Cu2+ at high non-toxic concentration, by mucilage release, alterations in the architecture of the outer cell wall layer and lipid structures, and polyphosphate accumulation within mucilage matrix. The main route of copper detoxification is by Cu2+ coordination to polyphosphates in penta-coordinated geometry. The sequestrated Cu2+ was accessible and could be released by extracellular chelating agents. Finally, the reduction in Cu2+ to Cu1+ appears also to take place. These findings reveal the biochemical basis of the capacity of microalgae to adapt to high external copper concentrations and to serve as both, sinks and pools of environmental copper.


Assuntos
Biomassa , Chlorella/crescimento & desenvolvimento , Cobre/metabolismo , Microalgas/crescimento & desenvolvimento , Águas Residuárias/microbiologia , Microbiologia da Água , Chlorella/ultraestrutura , Ecossistema , Microalgas/ultraestrutura
7.
Chemosphere ; 260: 127553, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32653748

RESUMO

The impact of ionizing radiation on microorganisms such as microalgae is a topic of increasing importance for understanding the dynamics of aquatic ecosystems in response to environmental radiation, and for the development of efficient approaches for bioremediation of mining and nuclear power plants wastewaters. Currently, nothing is known about the effects of ionizing radiation on the microalgal cell wall, which represents the first line of defence against chemical and physical environmental stresses. Using various microscopy, spectroscopy and biochemical techniques we show that the unicellular alga Chlorella sorokiniana elicits a fast response to ionizing radiation. Within one day after irradiation with doses of 1-5 Gy, the fibrilar layer of the cell wall became thicker, the fraction of uronic acids was higher, and the capacity to remove the main reactive product of water radiolysis increased. In addition, the isolated cell wall fraction showed significant binding capacity for Cu2+, Mn2+, and Cr3+. The irradiation further increased the binding capacity for Cu2+, which appears to be mainly bound to glucosamine moieties within a chitosan-like polymer in the outer rigid layer of the wall. These results imply that the cell wall represents a dynamic structure that is involved in the protective response of microalgae to ionizing radiation. It appears that microalgae may exhibit a significant control of metal mobility in aquatic ecosystems via biosorption by the cell wall matrix.


Assuntos
Chlorella/metabolismo , Metais/metabolismo , Antioxidantes/metabolismo , Biodegradação Ambiental , Biomassa , Parede Celular/metabolismo , Chlorella/efeitos dos fármacos , Ecossistema , Microalgas/metabolismo , Radiação Ionizante , Águas Residuárias
8.
Dalton Trans ; 48(18): 6061-6070, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30734795

RESUMO

Biliverdin (BV), a product of heme catabolism, is known to interact with transition metals, but the details of such interactions under physiological conditions are scarce. Herein, we examined coordinate/redox interactions of BV with Cu2+ in phosphate buffer at pH 7.4, using spectrophotometry, HESI-MS, Raman spectroscopy, 1H NMR, EPR, fluorimetry, and electrochemical methods. BV formed a stable coordination complex with copper in 1 : 1 stoichiometry. The structure of BV was more planar and energetically stable in the complex. The complex showed strong paramagnetic effects that were attributed to an unpaired delocalized e-. The delocalized electron may come from BV or Cu2+, so the complex is formally composed either of BV radical cation and Cu1+ or of BV radical anion and Cu3+. The complex underwent oxidation only in the presence of both O2 and an excess of Cu2+, or a strong oxidizing agent, and it was resistant to reducing agents. The biological effects of the stable BV metallocomplex containing a delocalized unpaired electron should be further examined, and may provide an answer to the long-standing question of high energy investment in the catabolism of BV, which represents a relatively harmless molecule per se.


Assuntos
Biliverdina/química , Complexos de Coordenação/síntese química , Cobre/química , Corantes Fluorescentes/química , Técnicas Eletroquímicas/métodos , Elétrons , Concentração de Íons de Hidrogênio , Ligantes , Oxirredução , Termodinâmica
9.
Free Radic Biol Med ; 129: 279-285, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30267756

RESUMO

An increase in the copper pool in body fluids has been related to a number of pathological conditions, including infections. Copper ions may affect antibiotics via the formation of coordination bonds and/or redox reactions. Herein, we analyzed the interactions of Cu2+ with eight ß-lactam antibiotics using UV-Vis spectrophotometry, EPR spectroscopy, and electrochemical methods. Penicillin G did not show any detectable interactions with Cu2+. Ampicillin, amoxicillin and cephalexin formed stable colored complexes with octahedral coordination environment of Cu2+ with tetragonal distortion, and primary amine group as the site of coordinate bond formation. These ß-lactams increased the solubility of Cu2+ in the phosphate buffer. Ceftazidime and Cu2+ formed a complex with a similar geometry and gave rise to an organic radical. Ceftriaxone-Cu2+ complex appears to exhibit different geometry. All complexes showed 1:1 stoichiometry. Cefaclor reduced Cu2+ to Cu1+ that further reacted with molecular oxygen to produce hydrogen peroxide. Finally, meropenem underwent degradation in the presence of copper. The analysis of activity against Escherichia coli and Staphylococcus aureus showed that the effects of meropenem, amoxicillin, ampicillin, and ceftriaxone were significantly hindered in the presence of copper ions. The interactions with copper ions should be taken into account regarding the problem of antibiotic resistance and in the selection of the most efficient antimicrobial therapy for patients with altered copper homeostasis.


Assuntos
Antibacterianos/química , Complexos de Coordenação/química , Cobre/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Amoxicilina/química , Amoxicilina/farmacologia , Ampicilina/química , Ampicilina/farmacologia , Antibacterianos/farmacologia , Cefaclor/química , Cefaclor/farmacologia , Ceftazidima/química , Ceftazidima/farmacologia , Ceftriaxona/química , Ceftriaxona/farmacologia , Cefalexina/química , Cefalexina/farmacologia , Complexos de Coordenação/farmacologia , Escherichia coli/crescimento & desenvolvimento , Meropeném/química , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Oxirredução , Penicilina G/química , Penicilina G/farmacologia , Solubilidade , Staphylococcus aureus/crescimento & desenvolvimento
10.
Sci Rep ; 8(1): 3530, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476145

RESUMO

Coordinate and redox interactions of epinephrine (Epi) with iron at physiological pH are essential for understanding two very different phenomena - the detrimental effects of chronic stress on the cardiovascular system and the cross-linking of catecholamine-rich biopolymers and frameworks. Here we show that Epi and Fe3+ form stable high-spin complexes in the 1:1 or 3:1 stoichiometry, depending on the Epi/Fe3+ concentration ratio (low or high). Oxygen atoms on the catechol ring represent the sites of coordinate bond formation within physiologically relevant bidentate 1:1 complex. Redox properties of Epi are slightly impacted by Fe3+. On the other hand, Epi and Fe2+ form a complex that acts as a strong reducing agent, which leads to the production of hydrogen peroxide via O2 reduction, and to a facilitated formation of the Epi-Fe3+ complexes. Epi is not oxidized in this process, i.e. Fe2+ is not an electron shuttle, but the electron donor. Epi-catalyzed oxidation of Fe2+ represents a plausible chemical basis of stress-related damage to heart cells. In addition, our results support the previous findings on the interactions of catecholamine moieties in polymers with iron and provide a novel strategy for improving the efficiency of cross-linking.


Assuntos
Adrenérgicos/química , Complexos de Coordenação/química , Elétrons , Epinefrina/química , Ferro/química , Oxigênio/química , Cloretos/química , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Férricos/química , Compostos Ferrosos/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Oximetria , Soluções , Análise Espectral Raman
11.
Mol Cell Biochem ; 444(1-2): 143-148, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29188533

RESUMO

The objective of this study was to investigate in vitro effects of 10 µM DL-homocysteine (DL-Hcy), DL-homocysteine thiolactone-hydrochloride (DL-Hcy TLHC), and L-homocysteine thiolactone-hydrochloride (L-Hcy TLHC) on the oxygen consumption of rat heart tissue homogenate, as well as the involvement of the gasotransmitters NO, H2S and CO in the effects of the most toxic homocysteine compound, DL-Hcy TLHC. The possible contribution of the gasotransmitters in these effects was estimated by using the appropriate inhibitors of their synthesis (N ω-nitro-L-arginine methyl ester (L-NAME), DL-propargylglycine (DL-PAG), and zinc protoporphyrin IX (ZnPPR IX), respectively). The oxygen consumption of rat heart tissue homogenate was measured by Clark/type oxygen electrode in the absence and presence of the investigated compounds. All three homocysteine-based compounds caused a similar decrease in the oxygen consumption rate compared to control: 15.19 ± 4.01%, 12.42 ± 1.01%, and 16.43 ± 4.52% for DL-Hcy, DL-Hcy TLHC, or L-Hcy TLHC, respectively. All applied inhibitors of gasotransmitter synthesis also decreased the oxygen consumption rate of tissue homogenate related to control: 13.53 ± 1.35% for L-NAME (30 µM), 5.32 ± 1.23% for DL-PAG (10 µM), and 5.56 ± 1.39% for ZnPPR IX (10 µM). Simultaneous effect of L-NAME (30 µM) or ZnPPR IX (10 µM) with DL-Hcy TLHC (10 µM) caused a larger decrease of oxygen consumption compared to each of the substances individually. However, when DL-PAG (10 µM) was applied together with DL-Hcy TLHC (10 µM), it attenuated the effect of DL-Hcy TLHC from 12.42 ± 1.01 to 9.22 ± 1.58%. In conclusion, cardiotoxicity induced by Hcy-related compounds, which was shown in our previous research, could result from the inhibition of the oxygen consumption, and might be mediated by the certain gasotransmitters.


Assuntos
Gasotransmissores/farmacologia , Homocisteína , Miocárdio/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Animais , Homocisteína/análogos & derivados , Homocisteína/farmacologia , Masculino , Ratos , Ratos Wistar
12.
Chem Biol Interact ; 278: 129-134, 2017 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-29079291

RESUMO

Toxic effects of unconjugated bilirubin (BR) in neonatal hyperbilirubinemia have been related to redox and/or coordinate interactions with Cu2+. However, the development and mechanisms of such interactions at physiological pH have not been resolved. This study shows that BR reduces Cu2+ to Cu1+ in 1:1 stoichiometry. Apparently, BR undergoes degradation, i.e. BR and Cu2+ do not form stable complexes. The binding of Cu2+ to inorganic phosphates, liposomal phosphate groups, or to chelating drug penicillamine, impedes redox interactions with BR. Cu1+ undergoes spontaneous oxidation by O2 resulting in hydrogen peroxide accumulation and hydroxyl radical production. In relation to this, copper and BR induced synergistic oxidative/damaging effects on erythrocytes membrane, which were alleviated by penicillamine. The production of reactive oxygen species by BR and copper represents a plausible cause of BR toxic effects and cell damage in hyperbilirubinemia. Further examination of therapeutic potentials of copper chelators in the treatment of severe neonatal hyperbilirubinemia is needed.


Assuntos
Bilirrubina/química , Cobre/química , Penicilamina/química , Bilirrubina/toxicidade , Células Cultivadas , Cobre/toxicidade , Espectroscopia de Ressonância de Spin Eletrônica , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/química , Radical Hidroxila/metabolismo , Oxirredução , Fosfatos/química , Espectrofotometria Ultravioleta
13.
Microbiology (Reading) ; 163(3): 364-372, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28100310

RESUMO

Increasing resistance of fungal strains to known fungicides has prompted identification of new candidates for fungicides among substances previously used for other purposes. We have tested the effects of known anion channel inhibitors anthracene-9-carboxylic acid (A9C) and niflumic acid (NFA) on growth, energy metabolism and anionic current of mycelium of fungus Phycomyces blakesleeanus. Both inhibitors significantly decreased growth and respiration of mycelium, but complete inhibition was only achieved by 100 and 500 µM NFA for growth and respiration, respectively. A9C had no effect on respiration of human NCI-H460 cell line and very little effect on cucumber root sprout clippings, which nominates this inhibitor for further investigation as a potential new fungicide. Effects of A9C and NFA on respiration of isolated mitochondria of P. blakesleeanus were significantly smaller, which indicates that their inhibitory effect on respiration of mycelium is indirect. NMR spectroscopy showed that both A9C and NFA decrease the levels of ATP and polyphosphates in the mycelium of P. blakesleeanus, but only A9C caused intracellular acidification. Outwardly rectifying, fast inactivating instantaneous anionic current (ORIC) was also reduced to 33±5 and 21±3 % of its pre-treatment size by A9C and NFA, respectively, but only in the absence of ATP. It can be assumed from our results that the regulation of ORIC is tightly linked to cellular energy metabolism in P. blakesleeanus, and the decrease in ATP and polyphosphate levels could be a direct cause of growth inhibition.


Assuntos
Antracenos/farmacologia , Antifúngicos/farmacologia , Respiração Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ácido Niflúmico/farmacologia , Phycomyces/crescimento & desenvolvimento , Trifosfato de Adenosina/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Linhagem Celular Tumoral , Cucumis sativus/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Técnicas de Patch-Clamp , Phycomyces/efeitos dos fármacos , Phycomyces/metabolismo , Polifosfatos/metabolismo , Canais de Ânion Dependentes de Voltagem/antagonistas & inibidores
14.
Res Microbiol ; 167(6): 521-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27164550

RESUMO

(51)V NMR spectroscopy was used for detection and identification of cell-associated vanadate (V(5+)) species after exposure of Phycomyces blakesleeanus mycelium, in exponential phase of growth, to sodium orthovanadate. Complete disappearance of monomer and dimer signals and decreased intensity of the tetramer signal were observed about 40 min after treatment. Simultaneously, a signal at -532 ppm, with increasing intensity, was detected in spectra. The time-dependent rise in this signal was connected to a decrease in the extracellular monomer signal, indicating its transport into the cell. The signal at -532 ppm did not belong to any known simple oxido-vanadate species, nor to a complex with any of the components of experimental medium. This signal was the only one present in spectrum of the mycelium washed 35 min after treatment, and the only one observed in mycelium cultivated on vanadate-contained medium. Therefore, its appearance can be attributed to intracellular complexation, and may represent an important detoxification mechanism of the cell exposed to a physiologically relevant concentration of vanadate. Experiments ((51)V NMR and polarography) performed with Cd-pretreated mycelium (inhibitor of an enzyme responsible for V(5+) reduction) and ferricyanide-preincubated mycelium excluded the possibility of V(5+) tetramer's entry into the cell.


Assuntos
Espectroscopia de Ressonância Magnética , Micélio/química , Phycomyces/química , Phycomyces/metabolismo , Vanadatos/metabolismo , Inativação Metabólica , Phycomyces/crescimento & desenvolvimento , Vanadatos/análise
15.
Anal Bioanal Chem ; 407(24): 7487-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26253227

RESUMO

Vanadium speciation in the fungus Phycomyces blakesleeanus was examined by X-ray absorption near-edge structure (XANES) spectroscopy, enabling assessment of oxidation states and related molecular symmetries of this transition element in the fungus. The exposure of P. blakesleeanus to two physiologically important vanadium species (V(5+) and V(4+)) resulted in the accumulation of this metal in central compartments of 24 h old mycelia, most probably in vacuoles. Tetrahedral V(5+), octahedral V(4+), and proposed intracellular complexes of V(5+) were detected simultaneously after addition of a physiologically relevant concentration of V(5+) to the mycelium. A substantial fraction of the externally added V(4+) remained mostly in its original form. However, observable variations in the pre-edge-peak intensities in the XANES spectra indicated intracellular complexation and corresponding changes in the molecular coordination symmetry. Vanadate complexation was confirmed by (51)V NMR and Raman spectroscopy, and potential binding compounds including cell-wall constituents (chitosan and/or chitin), (poly)phosphates, DNA, and proteins are proposed. The evidenced vanadate complexation and reduction could also explain the resistance of P. blakesleeanus to high extracellular concentrations of vanadium.


Assuntos
Phycomyces/fisiologia , Vanádio/química , Espectroscopia por Absorção de Raios X/métodos , Análise Espectral Raman
16.
Res Microbiol ; 166(3): 162-73, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25701762

RESUMO

We describe here whole-cell currents of droplets prepared from the apical region of growing Phycomyces blakesleeanus sporangiophores. Whole-cell current recordings revealed the osmotically activated, outwardly rectifying, fast inactivating instantaneous current (ORIC) with biophysical properties closely resembling volume-regulated anionic current (VRAC). ORIC is activated under conditions of osmotically induced swelling and shows strong selectivity for anions over cations. In addition, ORIC shows voltage and time-dependent inactivation at positive potentials and recovery from inactivation at negative potentials. ORIC is blocked by anthracene-9-carboxylic acid, an anion channel blocker, in a voltage-dependent manner. This is the first report of the presence of VRAC-like current in an organism outside the chordate lineage.


Assuntos
Membrana Celular/fisiologia , Canais Iônicos/fisiologia , Potenciais da Membrana , Pressão Osmótica , Phycomyces/fisiologia , Antracenos/farmacologia , Ativação do Canal Iônico , Técnicas de Patch-Clamp
17.
Sci Rep ; 4: 5955, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25092529

RESUMO

In vitro studies have shown that hydrogen peroxide (H2O2) produced by high-concentration ascorbate and cell culture medium iron efficiently kills cancer cells. This provided the rationale for clinical trials of high-dose intravenous ascorbate-based treatment for cancer. A drawback in all the in vitro studies was their failure to take into account the in vivo concentration of iron to supplement cell culture media which are characterized by low iron content. Here we showed, using two prostate cancer cell lines (LNCaP and PC-3) and primary astrocytes, that the anticancer/cytotoxic effects of ascorbate are completely abolished by iron at physiological concentrations in cell culture medium and human plasma. A detailed examination of mechanisms showed that iron at physiological concentrations promotes both production and decomposition of H2O2. The latter is mediated by Fenton reaction and prevents H2O2 accumulation. The hydroxyl radical, which is produced in the Fenton reaction, is buffered by extracellular proteins, and could not affect intracellular targets like H2O2. These findings show that anticancer effects of ascorbate have been significantly overestimated in previous in vitro studies, and that common cell culture media might be unsuitable for redox research.


Assuntos
Antineoplásicos/farmacologia , Ácido Ascórbico/farmacologia , Ferro/farmacologia , Próstata/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/metabolismo , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/metabolismo , Ferro/química , Ferro/metabolismo , Masculino , Oxirredução , Próstata/metabolismo , Próstata/patologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia
18.
PLoS One ; 9(7): e102849, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036378

RESUMO

The biological and chemical basis of vanadium action in fungi is relatively poorly understood. In the present study, we investigate the influence of vanadate (V5+) on phosphate metabolism of Phycomyces blakesleeanus. Addition of V5+ caused increase of sugar phosphates signal intensities in 31P NMR spectra in vivo. HPLC analysis of mycelial phosphate extracts demonstrated increased concentrations of glucose 6 phosphate, fructose 6 phosphate, fructose 1, 6 phosphate and glucose 1 phosphate after V5+ treatment. Influence of V5+ on the levels of fructose 2, 6 phosphate, glucosamine 6 phosphate and glucose 1, 6 phosphate (HPLC), and polyphosphates, UDPG and ATP (31P NMR) was also established. Increase of sugar phosphates content was not observed after addition of vanadyl (V4+), indicating that only vanadate influences its metabolism. Obtained results from in vivo experiments indicate catalytic/inhibitory vanadate action on enzymes involved in reactions of glycolysis and glycogenesis i.e., phosphoglucomutase, phosphofructokinase and glycogen phosphorylase in filamentous fungi.


Assuntos
Fungos/metabolismo , Phycomyces/metabolismo , Fosfatos Açúcares/metabolismo , Vanadatos/metabolismo , Trifosfato de Adenosina/metabolismo , Metabolismo dos Carboidratos/fisiologia , Catálise , Glicólise/fisiologia , Cinética , Espectroscopia de Ressonância Magnética/métodos , Polifosfatos/metabolismo , Uridina Difosfato Glucose/metabolismo
19.
Res Microbiol ; 164(7): 770-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23542427

RESUMO

Environmental changes can often result in oxygen deficiency which influences cellular energy metabolism, but such effects have been insufficiently studied in fungi. The effects of oxygen deprivation on respiration and phosphate metabolites in Phycomyces blakesleeanus were investigated by oxygen electrode and (31)P NMR spectroscopy. Mycelium was incubated in hypoxic and anoxic conditions for 1.5, 3 and 5 h and then reoxygenated. Participation of alternative oxidase (AOX) in total respiration increased gradually in both treatments and after 5 h of anoxia exceeded a value 50% higher than in control. Shortly after reintroduction of oxygen into the system AOX level decreased close to the control level. Oxygen deprivation also caused a reversible decrease of polyphosphate/inorganic phosphate ratio (PPc/Pi), which was strongly correlated with the increase of AOX participation in total respiration. Unexpectedly, ATP content remained almost constant, probably due to the ability of PolyP to sustain energy and phosphate homeostasis of the cell under stress conditions. This was further substantiated by the effects of azide, a cytochrome c oxidase inhibitor, which also decreased PPc/Pi ratio, but to a smaller extent in oxygen deprived than control and reoxygenated specimens.


Assuntos
Oxigênio/metabolismo , Fosfatos/metabolismo , Phycomyces/metabolismo , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Proteínas Fúngicas/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Phycomyces/enzimologia , Proteínas de Plantas/metabolismo
20.
Res Microbiol ; 164(1): 61-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22992386

RESUMO

The biological and chemical basis of vanadium action and transport in fungi is relatively poorly understood. In this study we investigated the interactions of vanadium in physiologically-relevant redox states: vanadate (+5) and vanadyl (+4), with mycelium of fungus Phycomyces blakesleeanus using EPR and (31)P NMR spectroscopy and biochemical assays. We determined that P. blakesleeanus reduces V(5+) to V(4+) in the extracellular compartment by the means of cell surface enzyme with ferricyanide reductase activity, which contains molybdenum-molybdopterin as a cofactor. Both, V(5+) and V(4+) bind to cell wall. They enter the cytoplasm via phosphate transporter and cation channels, respectively, and exhibit different metabolic effects. Vanadate provokes increased biomass production, the effects being inverted to toxic at higher V(5+) concentrations. In addition, V(5+) activates the synthesis of sugar phosphates and oligophosphates. On the other hand, V(4+) exhibits toxic effects even at low concentrations. The V(4+) detoxification route involves binding to vacuolar polyphosphates. Altogether our results imply that the mechanism of interaction of vanadium with P. blakesleeanus involves three major steps: extracellular enzymatic V(5+)/V(4+) reduction, V(4+) influx, and vacuolar storage, with an additional step - V(5+) import occurring at higher vanadate concentrations.


Assuntos
Micélio/metabolismo , Phycomyces/metabolismo , Vanádio/metabolismo , Transporte Biológico , Ativação Enzimática , Cinética , Micélio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...